
The Overlay Scan Attack: Inferring Topologies of
Distributed Pub/Sub Systems through Broker Saturation

Leonardo Aniello
aniello@dis.uniroma1.it

Roberto Baldoni
baldoni@dis.uniroma1.it

Claudio Ciccotelli
ciccotelli@dis.uniroma1.it

Giuseppe Antonio
Di Luna

diluna@dis.uniroma1.it

Francesco Frontali
f.frontali@hotmail.it

Leonardo Querzoni
querzoni@dis.uniroma1.it

Research Center on Cyber Intelligence and Information Security and
Department of Computer, Control, and Management Engineering Antonio Ruberti

Sapienza University of Rome
Via Ariosto 25, Rome, Italy

ABSTRACT
While pub/sub communication middleware has become main-
stream in many application domains, little has been done to
assess its weaknesses from a security standpoint. Complex
attacks are usually planned by attackers by carefully analyz-
ing the victim to identify those systems that, if successfully
targeted, could provide the most effective result. In this pa-
per we show that some pub/sub middleware are inherently
vulnerable to a specific kind of preparatory attack, namely
the Overlay Scan Attack, that a malicious user could exploit
to infer the internal topology of a system, a sensible informa-
tion that could be used to plan future attacks. The topology
inference is performed by only using the standard primitives
provided by the pub/sub middleware and assuming minimal
knowledge on the target system. The practicality of this at-
tack has been shown both in a simulated environment and
through a test performed on a SIENA pub/sub deployment.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection; C.2.1 [Computer-Communication
Networks]: Network Architecture and Design—Network
topology

Keywords
publish/subscribe, topology inference, security, network to-
mography

1. INTRODUCTION
Publish/subscribe systems can be considered nowadays as

one of the mainstream middleware solutions for many-to-
many asynchronous communications. In the last five to ten

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
DEBS’14, May 26–29, 2014, MUMBAI, India.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2737-4/14/05 . . . $15.00.
http://dx.doi.org/10.1145/2611286.2611295.

years the rise of large-scale cloud platforms further boosted
the adoption of such solutions that can be thus easily con-
sidered as a fundamental building block for most of such
platforms. Surprisingly enough, despite the growing impor-
tance of the role played by publish/subscribe middleware,
little attention has been paid by the research community to
the security of such systems. This lack of study and anal-
ysis, is quite dangerous as it may leave open vulnerabilities
in systems many companies blindly rely upon.

A typical strategy employed in many cyber attacks in-
cludes three distinct steps: (i) first the attacker starts a
reconnaissance phase where he silently studies the target
system to understand the most effective strategy to adopt
in delivering the attack, then (ii) he puts in place decoy ac-
tions aimed at disguising his identity and his real target and
finally (iii) he performs the real attack. The reconnaissance
phase is often performed using a set of tools and techniques
whose main purpose is to collect detailed information about
the target systems: characteristics of the software/hardware
platforms used by the target, its internal topological struc-
ture, its defensive strategies, etc. A typical example of such
activity is a port scan attack [12] aimed at identifying hosts
on the target domain using software with known vulnerabil-
ities. This kind of “preliminary” attacks are often underes-
timated by system administrators that consider them only
slightly more annoying than email spams. Conversely, the
amount of non-publicly available information that can be
obtained with these attacks is striking and greatly help the
attacker in carefully planning potentially devastating future
attacks.

In particular, knowledge about the internal topology of
a target system is extremely useful to plan a cyber attack.
Studer et al. [19] illustrate the Coremelt Attack, which aims
at congesting the network core by generating traffic among
N malicious clients so that a target link of the system gets
saturated. Network topology has to be known in order
to properly generate such a traffic. A similar approach is
also used in the Crossfire Attack [15]. Differently from the
Coremelt attack, here the traffic is directed towards a large
number of publicly accessible destinations rather than being
routed among the malevolent bots themselves. The gener-
ated traffic is aimed at congesting some target links, which

again requires a certain level of knowledge of the target sys-
tem.

Starting form this point of view, this paper analyzes a
well known wide-area pub/sub middleware, namely SIENA,
and shows how it is vulnerable to an attack, the Overlay
Scan Attack, aimed at inferring the internal topology of a
distributed deployment. By assuming only knowledge about
a subset of the event brokers (edge brokers), the goal of
the attack is to infer the full set of brokers (both edge and
internal or core brokers) and the topology interconnecting
them.

In particular, the paper introduces an overlay scan algo-
rithm, namely Real Mapper, that is able to infer the full
overlay network topology of a SIENA deployment by ac-
cessing the system with normal clients (i.e. publishers and
subscribers) connected to edge brokers. Real Mapper in-
jects properly shaped traffic in the pub/sub system and ob-
serves how event notification latency changes along the time.
Thanks to these observations, it is possible to infer the posi-
tion of overloaded internal brokers within the SIENA over-
lay network. In order to let the reader get through the full
details of Real Mapper, we first introduce Full Mapper, an
overlay scan algorithm that works in ideal conditions such
as: (i) all links in the target overlay network have the same
latency and (ii) the traffic flowing in the SIENA system is
only the one produced by the attacker. Then we remove the
previous assumptions and provide the complete description
of Real Mapper.

The feasibility of the Overlay Scan Attack through the
proposed algorithm is shown both via simulations and via
tests performed in a real deployment of the SIENA pub-
licly available prototype [1]. It is important to remark that,
while all our tests have been performed considering SIENA
as target case study, the Overlay Scan Attack can strike any
system that performs event diffusion using spanning trees
satisfying the all-pairs path symmetry property [5].

After this introduction, the paper continues by reporting
the state of the art on this topic in Section 2; then it de-
scribes a reference system model in Section 3 and introduces
both algorithms in Section 4; Section 5 reports on our ex-
perimental evaluation and, finally, Section 6 concludes the
paper.

2. RELATED WORK
The issue of topology inference has been tackled in lit-

erature in different ways and distinct contexts. Topology
inference techniques can be classified as passive or active.

Passive techniques are oblivious of the layer of the target
network and employ non-intrusive measurements to gather
required information, such as packets delay. This class of
techniques is closely related to the Distance Realization Prob-
lem [13], which concerns the construction of a network topol-
ogy on the base of a set of distances among network nodes.
It was proved by Dress [10] that for a given distance ma-
trix it is always possible to find an optimal realization. This
problem is NP-complete [2], but there exist algorithms that
provide an approximate solution within a fixed bound from
the optimum [6]. In case the topology is a tree, the problem
can be solved optimally with O(n2) time complexity [7].

Active topology inference techniques are intrusive in the
sense that they use probes. These probes are specific for

a particular network layer, which implies that each active
technique is tailored for a single layer.

Bejerano [4] proposes a technique for inferring the topol-
ogy of large heterogeneous Ethernet LANs that works at
the data link layer and exploits the fact that layer-2 ele-
ments can provide their Address Forwarding Tables (AFT).
Results show that this technique is very successful at discov-
ering the real topology regardless of uncooperative layer-2
elements and its time complexity is O(n2).

Inference techniques for the Internet layer usually employ
traceroute-like tools to discover single end-to-end paths. As
an example, Jin et al. [14] present the Isomap Merging Al-
gorithm that has O(n3) time complexity and provides an
average accuracy of 62%. Such a poor result is mainly due
to the limitation of these traceroute-based techniques, which
lies in the presence of anonymous routers that don’t provide
the expected information.

Ni et al. [16] try to overcome this limitation by propos-
ing the network tomography approach, which only uses end-
to-end measurements like packets loss and delay to derive
network structure without relying on the cooperation of in-
ternal nodes. They devise one algorithm for static topologies
(O(n2 logn) time complexity) and another one for networks
where nodes can join and leave (O(n2)), both with a pre-
cision of about 50%. This lack of precision depends on the
fact that path lengths derived from loss and delay measure-
ments, if quite small, can be easily distorted. In order to
improve the detection accuracy, they propose an hybrid ap-
proach that includes traceroute-based measurements.

Topology inference techniques for the overlay layer are
typically designed for p2p system that are characterized by
high nodes turnover, and are usually based on capturing
snapshots of network structure. Stutzbach and Rejaie [20]
present Cruiser, a crawler for inferring the topology of Gnu-
tella network. They show that about 30%-38% of the peers
are not reachable, either because they are overloaded or be-
hind a firewall.

Fragouli et al. [11] describe a more general technique which
works for multicast overlay networks that implement the
network coding paradigm1. An alternative approach based
on gossiping (They employed the Vivaldi algorithm [8]) and
clustering (they used agglomerative clustering [9]) is out-
lined by Schutt et al [18], with focus on identifying the lo-
cation of data centers and their sizes To the best of our
knowledge, none has ever tackled the problem of topology
inference in pub/sub systems.

In the field of publish/subscribe systems, Wun et al. [21]
present a taxonomy for a specific type of attack against such
kind of systems, namely the Denial of Service (DoS). In par-
ticular, the authors describe two key characteristics of DoS
attacks in the context of pub/sub systems: localization and
transmission. The localization of a DoS attack concerns the
fact that a publication flooding attack at an edge broker can
overload that broker, preventing the attack to propagate to
the internal brokers. The transmission of a DoS attack con-
cerns the possibility to propagate the effect of a DoS attack
from an edge node to another remote edge one without af-
fecting the internal nodes along the path. This is due to

1The network coding paradigm is based on the idea that
independent information flows can be linearly combined
throughout the network to give benefits in terms of through-
put and complexity.

the overhead introduced at the remote edge node to deliver
notifications to all subscribers.

3. SYSTEM MODEL
In this paper we consider a managed wide-area broker-

based distributed publish/subscribe systems [3]. The sys-
tem goal is to efficiently diffuse events issued by content
producers (called publishers) to a set of recipients (called
subscribers). An event is a piece of information character-
ized by a predefined structure (called event schema). Such
structure can either be very simple like the name of a single
topic (topic-based event selection model), or based on mul-
tiple attributes defined in different domains (content-based
event selection model). Each subscriber defines through a
subscription, by means of constraints expressed on the event
schema, a subset of all possible events. We say that an event
matches a subscription if the event content satisfies the con-
straints defined by the subscription. The set of recipients
for each published event can thus dynamically change on
the basis of currently issued subscriptions. A distributed
event notification service (ENS) constituted by multiple bro-
kers mediates among clients implementing the correct event
routing functionalities of the system. The only assumptions
we make about the internal functioning of the ENS is that
it uses application level multicast trees to diffuse events,
and that these diffusion trees satisfy the well-known all-pairs
path symmetry property [5]. This property states that the
event notification path traversed from a source broker Bx

to a destination broker By by all events published in Bx is
equal, but with opposite direction, to path traversed from
broker By to broker Bx by all events published in By. Mul-
ticast trees built using shortest paths usually satisfy this
property. The SIENA publish/subscribe system is a typical
example of an ENS satisfying all the previous assumptions.

We model our publish/subscribe system as a tuple P :
〈G(V,E), d, r〉 where: d : E → R+ r : V → {rmin, rmax}
and G is an undirected graph made up of brokers V and
application level links E interconnecting them. The func-
tions in the tuple are respectively a delay function d that
assigns a given latency to each edge, that is a message will
be delayed of d(e) time units when it traverses edge e, and a
computational rate r that assigns a maximum message dis-
patching rate to each broker in the system. Here we assume
that brokers are characterized by either a small computa-
tional rate rmin or a large one rmax � rmin; this simplify-
ing assumption is actually satisfied by many systems where
computational resources are often homogeneous to facilitate
their management. In section 4.1 we will further discuss this
assumption and show how it can be relaxed. The tuple rep-
resents all the fundamental characteristics of the distributed
publish/subscribe system including its topological structure.

Here we assume that the computation time needed on a
broker v to correctly manage and route an event is negligible
with respect to network latencies as long as the broker is
asked to route less than r(v) events per second; when pushed
above this threshold we say that the broker is saturated, and
that its management of an event adds a latency factor that
is in the same order of magnitude of network latencies. In
particular, according to the queuing theory, we modeled each
broker as a single server with a single queue, characterized
by a fixed service rate r(v). We also assume that links are
symmetric and that available bandwidth is large enough to

avoid becoming a bottleneck, that is, computational resource
are saturated before network may become saturated.

The set of brokers V is partitioned in two subsets V =
Ve∪Vi where Ve is the set of edge brokers, while Vi is the set
of internal brokers. External brokers are publicly announced
by the system owner as they serve as service access points for
external clients (both publishers and subscribers), while in-
ternal brokers represent core infrastructure components for
the systems and are solely dedicated to event routing, there-
fore their existence is not announced publicly.

The publish/subscribe systems we consider are supposed
to be publicly available, thus we can expect application traf-
fic to be present within the ENS.

We assume the presence of an adversary whose purpose
is to infer G by only knowing Ve and by using the pub-
lish/subscribe system as a normal user. We assume the ad-
versary is able to control at least three clients, and that
these clients can be connected at his will to any of the edge
brokers. Furthermore, we assume that the clocks at these
clients can be synchronized such that their drift is order of
magnitude smaller than the latency of any link in E.

4. TOPOLOGY INFERENCE ALGORITHM
This section introduces an algorithm that can be used to

implement the Overlay Scan Attack. The algorithm has a
single purpose: collect information on the topology charac-
teristics of a distributed event notification service.

We first introduce a preliminary version, called Full Map-
per, that is based on two simplifying assumptions that will
help us introduce the most important characteristics of the
algorithm without the need to deal with some tricky issues.

Then we will remove these assumptions and introduce
the Real Mapper algorithm that fully adheres to the sys-
tem model introduced in Section 3 and can thus be adopted
in realistic settings where link delays may vary.

Both the Full and the Real Mapper algorithms are based
on a same idea: by injecting properly shaped application-
level traffic in the pub/sub system and by pushing it to the
saturation point, i.e. close to the point where at least one
broker is working slightly above its maximum computational
rate r, it is possible to induce notification delays in the sys-
tem. The amount of these delays, probed at several points
of the system, can be correlated to pinpoint the position of
the saturated broker in the overlay network. The iteration
of this analysis creates enough information to infer the full
internal topology of the system.

4.1 Full Mapper
The Full Mapper algorithm works in three phases:

1. Setup and distance estimation

2. Path discovery

3. Path merging

It assumes that all links in the ENS overlay network have
the same delay d and that this delay is known by the at-
tacker; the delay between a client controlled by the algo-
rithm and an edge broker is assumed to be negligible with
respect to d. Furthermore, it assumes that the only events
routed in the ENS are those generated by the attacker.
These unrealistic assumptions have been made to simplify
the comprehension of the algorithm and will be removed in

B3

B6

B4

B5

B2

B1

B7

CX

CY

CZ

events from
CX to CY

events from
CY to CX

events from
CZ to CY

(a) Client initialization and event flows setup.

B3

B6

B4

B5

B1

B7

CX

CY

CZ

1

6

2

5

3

4
4

35

2

6

1

(b) Flows of events just before broker saturation
kicks-in.

B3

B6

B4

B5

B1

B7

CX

CY

CZ

…

9

4

8

5

7
7,6

5,68

4

9

3
late

notification

(c) Client cx detects the first late notification (green event
with label 3)

B3

B6

B4

B5

B1

B7

CX

CY

CZ

4

10

5

9

6

8
8,7

6,79

5

10

4

late
notification

(d) Client cy detects the first late notification (orange
event with label 4)

Figure 1: Full Mapper functioning example.

the next Section with the introduction of the Real Mapper
algorithm.

Setup and distance estimation.
During this first phase, the algorithm starts by initializing

several clients such that each edge broker Bx has attached
a client cx.

Figure 1a shows an example ENS constituted by seven
event brokers with three attached clients (cx, cy and cz).
Thick lines represent links used by the ENS to route events
produced by these clients, while thin lines are links that we
suppose are not used in this example.

It then considers each possible pair of clients and config-
ures one as a publisher cx and the other as a subscriber cy.
Both are configured in such a way that, with high probabil-
ity, cy will be notified by the ENS of all and only the events
produced by cx. This can be obtained by issuing a very
specific subscription in a section of the event space where
other publishers will publish with very low probability. If
this statistical information is not directly available to the
attacker it can be easily inferred by silently monitoring the
set of events published in the system. With clients config-
ured in such a way, it starts publishing from cx to calculate
the average notification latency at cy.

This procedure is iterated until notification latencies are
available for every possible pair 〈cx, cy〉. These values are
recorded in a delay matrix D, with size |Ve|2. Note that,
due to the initial assumptions, each value in D represents
the hop count of the path connecting the two corresponding

brokers in the ENS overlay network. Indeed, if we divide
the path length (in time units) by the single hop delay d, we
obtain the length of the path in number of hops.

Path discovery.
In this second phase the algorithm iterates over all pairs
〈cx, cy〉 and, for each of them, iterates over all the remaining
clients selecting one at a time (cz). For each given triple
〈cx, cy, cz〉 the algorithm performs the following steps:

1. configures cx and cy as both publishers and subscribers
such that cx (resp. cy) will be notified of the events
published by cy (resp. cx);

2. the two clients synchronously start to publish events at
a rate of R/3 events per second (R is an estimation of
the maximum dispatching rate); each event is tagged
with a sequence number;

3. client cz and cy are configured as publisher (the for-
mer) and subscriber (the latter) such that cy will be
notified of the events published by cz;

4. cz starts to publish events at a rate slightly larger than
R/3 events per second;

The computational complexity of the algorithm is dom-
inated by the cost of the Path discovery phase, which is
proportional to the number of triples to analyze. Since such
number is equal to 3 n!

3!(n−3)!
, where n = |Ve|, the complexity

is O(n3). While this may sound like an excessive computa-
tional cost we remind to the reader that our goal is to show
that the attack is, in fact, feasible; conversely, providing an
efficient algorithm to perform the attack is out of the scope
of this paper.

According to the assumptions reported in Section 3, there
are two possible values for r, that the algorithm does not
know. However, it is possible to estimate a value for the
maximum processing rate by issuing publications to edge
brokers at an increasing rate until saturation is detected. In
this way, the value R we obtain is such that rmin ≤ R ≤
rmax. This implies that the algorithm is not able to saturate
some brokers, which in turn doesn’t allow the algorithm to
detect them. We refer to such brokers as invisible brokers,
and we will discuss in Section 5.1 how they impact on the
accuracy of the algorithm.

Figure 1a shows how clients cx, cy and cz are configured
to produce three event flows represented in the picture with
three different colors. Figure 1b reports events produced by
clients cx, cy and cz traveling in the ENS while no broker is
saturated. In this case cx and cy see events produced by the
other client arriving at a constant rate (R/3), without any
notification delay.

The stream of events injected by cz produces a saturation
in some of the brokers in the overlay network; in particu-
lar, all brokers in the subpath that is common to the paths
[Bx, By] and [Bz, By] are saturated as they are asked to
manage more than R events per second. Considering again
our example in Figure 1b, events produced by cz that have
to be notified at cy are represented by blue boxes. B3 is the
first broker that gets saturated.

If we now consider only the events that travel from cx to
cy and vice-versa, it is worth noticing that they are delayed
only in a specific section of the path connecting the two
clients, which is the subpath between some broker S (the
broker at the intersection between the paths [Bx, By] and
[Bz, By] and cy. We refer to S as the S-node of the triple
〈Bx, By, Bz〉. In our example (see Figure 1b) broker B3 is
the S-node. Events published by cx and cy that are currently
traveling through this broker (event 4 in the orange flow, and
event 3 in the green flow) will thus be the first ones whose
notification will be delayed on cx and cy.

In the example (Figure 1c), we can see that cx is the first
client that receives a late notification (the notification of
event 3 in the green flow). The client keeps track of this
sequence number as the other client cy has not seen its late
notification, yet.

The difference between the sequence numbers of the first
delayed event received by cx and the first delayed event re-
ceived by cy represents the difference between the distances
from edge broker Bx to broker S, and from edge broker By

to S (measured in number of hops).
When client cy (Figure 1d) receives its late notification

(the notification of event 4 in the orange flow) the algorithm
can calculate the difference between the two sequence num-
bers (the difference is 1 in this example) that is exactly the
difference between the length of the subpath connecting B1

to B3 (i.e. the S-node) and the length of the subpath con-
necting B3 to B7.

The analysis of a single triple thus provides three impor-
tant information: the existence of a broker S (that may be
an internal broker), and the length of two subpaths in the
ENS overlay network.

By iterating over all possible client triples, the algorithm
builds a set T where each entry includes the triple 〈Bx, By,
Bz〉, the related S-node S and the distances d(Bx, S) and
d(By, S) (measured in number of hops).

The way the path discovery phase works allows us to
partially relax the assumption about brokers computational
rate. Rather than constraining all the brokers with small
computational rate to have the same r, we can indeed de-
rive a range [rlmin, r

h
min] of values for rmin that still allows

our algorithm to work. The value of rlmin can be easily found
by searching for the maximum publishing rate for each pair
of edge brokers, and then taking the minimum value. In
order for our algorithm to work, we have to ensure that no
broker gets saturated by two streams, each flowing at R/3
events per second. This implies that R has to be set such
that 2

3
R < rlmin. On the other hand, we need to saturate

any non-invisible broker, i.e. R > rhmin. By consequence,
the maximum value allowed for rmin is 3

2
rlmin, so the range

of allowed values is [rlmin,
3
2
rlmin].

Path merging.
The information contained in T about internal brokers of

the overlay contains with high probability a large number
of duplicates, i.e. brokers that are listed separately in T ,
but that actually represent the same internal broker that
has been identified in the analysis of two distinct triples.
The path merging phase has the aim of getting rid of these
duplicates and build the final inferred topology of the ENS
overlay network. It consists of three phases.

In the first phase, the set of paths P is built in this way.
For each pair of edge brokers 〈Bx, By〉, a path [Bx, By] hav-
ing length d(Bx, By) (measured in number of hops) is added
to P . Each broker in any path is assigned a unique identifier.
During the merging phase, brokers in distinct paths can be
recognized as being the same broker. When this happens,
the same identifier is assigned.

In the second phase, for each entry of T the paths [Bx, By]
and [Bz, By] are retrieved from P and the following steps are
executed

1. the broker in the path [Bx, By] at distance d(Bx, S)
from Bx is replaced with S

2. the broker in the path [Bz, By] at distance d(By, S)
from By is replaced with S

3. all the brokers of the subpath [S,By] of the path [Bx, By]
are replaced with the brokers of the subpath [S,By] of
the path [Bz, By]

In the third phase, the inferred graph G′ = (V ′, E′) is
built as the union of all the paths in P .

4.2 Real Mapper
The Real Mapper algorithm adopts exactly the same strat-

egy as the Full Mapper algorithm, but for some minor mod-
ification needed to take into account application-level traffic
generated by normal users and the different latencies char-
acterizing the network links.

Application-level traffic can be considered as a sort of
steady state noise present in the system, which makes mea-
surements non-deterministic. We cope with this problem
by executing more iterations over time for each triple and
choosing the most frequent result. In this way, possible de-
viations due to such noise are likely to be discarded and

no invisible brokers with invisible brokers

Full Mapper Scenario A
◦ rmin = rmax = 150 msg/s
◦ d = 40 ms

Scenario B
◦ rmin = 150 msg/s
◦ rmax = 1000 msg/s
◦ d = 40 ms

Real Mapper
Each publisher is assigned a set of
subscribers according to a Zipf-like
distribution. Publications are sent
at a rate following a Poisson distri-
bution. The ratio #slow channels

#fast channels
is

0.25.

Scenario C
◦ rmin = rmax = 150 msg/s
◦ d1 = 4 ms (fast channels)
◦ d2 = 60 ms (slow channels)

Scenario D
◦ rmin = 150 msg/s
◦ rmax = 1000 msg/s
◦ d1 = 4 ms (fast channels)
◦ d2 = 60 ms (slow channels)

Table 1: Simulation Scenarios. For each scenario, maximum broker dispatching rate (r) and link delay (d)
are reported.

resulting measurements negligibly impacted. In Section 5.2
we will see in practice how the number of iterations affects
the accuracy of the algorithm.

The Real Mapper algorithm gets rid of the assumption on
constant network links and assumes a more realistic system
model where each link is possibly characterized by a different
latency amount. This modification has a deep impact on
the algorithm because end-to-end latencies collected in the
matrix D cannot be anymore considered the hop length of
the corresponding paths.

In order to calculate subpath lengths, the algorithm con-
siders a basic latency time unit u such that the lengths
recorded in P are obtained by diving by u, rather than by d.
The value of u is a parameter of the algorithm and must be
chosen such that none of the ENS links has a latency smaller
than u. Otherwise, the inferred paths would have a number
of brokers lower than they actually have in practice. On
the other hand, choosing u too small negatively affects the
precision in inferring the ENS topology because we would
be more likely to miss some mergings.

The introduction of this approximation for path lengths
will create possible false brokers in P , i.e. brokers that actu-
ally do not correspond to any real broker in the ENS. During
the Path merging phase, only the S-nodes are merged while
false brokers are removed. Consequently, the third step of
the second phase of the Path merging is not required any
more.

Note that due to this modification the algorithm is no
more capable of identifying internal brokers with degree 2
as they are non discernible from false brokers. However, it
should be noted that the usefulness of such brokers in a ENS
is debatable as they dot not increase in any useful way the
capacity, performance or reliability of the ENS.

5. EXPERIMENTAL EVALUATION
This section provides an evaluation of the effectiveness of

the algorithm introduced in Section 4. The evaluation was
firstly performed in size-varying pub/sub systems in a sim-
ulated environment (see Section 5.1) to show the sensitive-
ness of the algorithm to various characteristics of the target
system. Then we implemented the algorithm to work on
the official prototype of the SIENA publish/subscribe sys-
tem and run several tests to understand if the Overlay Scan
Attack can actually be performed on a real setting (see Sec-
tion 5.2).

5.1 Simulations
In order to test our algorithm in a simulated environ-

ment we implemented it on top of a simple publish/subscribe
mechanism based on a distributed set of event routers. For
the sake of simplicity we avoided to implement a full-fledged
SIENA-like content-based pub/sub system, but rather im-
plemented a simple multi-source multicast mechanism: ev-
ery broker in the system is equipped with a FIFO queue
used to store incoming messages, and every message is al-
ways forwarded to the next broker lying on the shortest path
toward the destination. Nodes are connected through delay
channels, a particular class of virtual links with fixed band-
width but variable delay. The prototype implementation
of the algorithms consists of two software modules: (i) a
Client whose instances connect to edge brokers and act as
publisher and/or a subscriber and (ii) the Controller that
coordinates the clients work. All the code was integrated in
the Omnet++ simulation environment.

In our tests we used two kinds of topologies, namely ran-
dom topologies and cluster topologies, to test the behavior
of the Real Mapper algorithm in different settings. We also
varied the value of r in order to include invisible brokers
in the test and assess their impact on the algorithm perfor-
mance. Finally we considered a simplified network model
where links can be roughly divided in two families, slow
channels and fast channels, with different latency values.
Tests were conducted on both the Full Mapper and the Real
Mapper algorithm. Results from the former constitute an in-
teresting baseline for the evaluation of the latter algorithm.

On the basis of these parameters we defined four different
test scenarios: two dedicated to Full Mapper, and two ded-
icated to Real Mapper. The details of these four scenarios
are reported in Table 1.

In order to evaluate the effectiveness of the algorithms, we
defined several accuracy metrics:

• broker detection rate (α): the ratio between the num-
ber of inferred internal brokers and the total number
of internal brokers;

• link detection rate (β): the ratio between the number
of inferred links and the total number of links;

• N-degree broker detection rate (η): the ratio between
the number of inferred internal brokers with degree
N > 2 and the total number of this kind of brokers;

If invisible brokers are present in the system, it is neces-
sary to introduce an additional metric:

• graph distance (δ): the minimum number of edit op-
erations (addition/removal of brokers and edges) re-
quired to transform the inferred topology so that it
becomes isomorphic to the original one [17]; if the in-
ferred topology is isomorphic to the original one, then
δ = 0.

Beyond the quality of the obtained outcomes, we evalu-
ated performances of our algorithms measuring its message
complexity and execution time.

5.1.1 Simulations on Random Topologies
A random topology is composed by a variable number

of internal brokers (from 3 to 15) and edge brokers (up to
20 nodes). We ran simulations to assess the accuracy of
Real Mapper, to compare the performance of Full and Real
Mapper and to evaluate the impact of invisible brokers on
the accuracy of both Full and Real Mapper.

0"

0,2"

0,4"

0,6"

0,8"

1"

8" 10" 12" 14" 16" 18" 20" 22"

de
te
c%
on

(ra
te
(

number(of(brokers(

broker"detec1on"rate"
link"detec1on"rate"
N7degree"broker"detec1on"rate"

Figure 2: Broker, link and N-degree broker detec-
tion rates for the Real Mapper (Scenario C) when
executed on a random topology with a fixed number
of edge brokers and an increasing number of internal
brokers.

Detection Accuracy.
In order to assess the accuracy of the algorithms, we used

a random topology with a fixed number of edge brokers and
a variable number of internal brokers. While the Full Map-
per showed a perfect accuracy in detecting both brokers and
links (Scenario A), the Real Mapper exhibited a decreasing
accuracy as the number of internal brokers increased (Sce-
nario C, see Figure 2).

This bad performance level was mainly caused by the in-
ability of the algorithm to correctly detect internal brokers
with degree 2. The same graph also show how the Real Map-
per always correctly detected brokers with degree larger than
2 (η = 1).

Performance Comparison.
We first compared the performances of Full Mapper and

Real Mapper in terms of execution time and message com-
plexity for a random topology with a fixed number of edge
brokers as the number of internal brokers increases. As Fig-
ure 3 shows, both metrics increase linearly with the num-
ber of internal brokers. However, as could be expected, the
Real Mapper algorithm sports worse performance on both
aspects with respect to the Full Mapper. This performance
difference is due to the large number of iterations that the
Real Mapper algorithm must perform to take into account
variable network latencies.

0"

2"

4"

6"

8"

10"

12"

0"

1"

2"

3"

4"

5"

6"

8" 10" 12" 14" 16" 18" 20" 22"

ex
ec
u%

on
(%
m
e(
(1
03
(se

co
nd

s)
(

m
es
sa
ge
s((
10

6 (m
sg
)(

number(of(brokers(

FM"msgs" RM"msgs" FM"0me" RM"0me"

Figure 3: Performance comparison between Full
Mapper (FM, Scenario A) and Real Mapper (RM,
Scenario C) in execution time and number of mes-
sages on a random topology with a fixed number of
edge brokers and an increasing number of internal
brokers.

0"

0,5"

1"

1,5"

2"

2,5"

4" 8" 12" 16" 20"

ex
ec
u%

on
(%
m
e(
(1
05
(se

co
nd

)(

edge(brokers(

Full"Mapper"

Real"Mapper"

Figure 4: Execution time comparison between Full
Mapper (Scenario A) and Real Mapper (Scenario
C) on a random topology with a fixed number of
internal brokers and an increasing number of edge
brokers.

We then investigated how performance are affected by the
number of edge brokers, by simulating the execution of the
algorithms on a random topology with a fixed number of in-
ternal brokers. Figure 4 shows that execution time increases
as more edge brokers are included in the topology, and that
again Real Mapper performs worse than Full Mapper.

Impact of Invisible Brokers.
We also analyzed how the presence of invisible brokers

affects the accuracy of the inferred topology. We built a
random topology and started setting brokers with degree
larger than 2 in invisible brokers by setting their dispatching
rate to rmax (see Table 1).

0"

10"

20"

30"

40"

50"

60"

0" 0,5" 1" 1,5" 2" 2,5" 3" 3,5" 4" 4,5" 5"

gr
ap

h&
di
st
an

ce
&

invisible&brokers&

Full"Mapper"

Real"Mapper"

Figure 5: Accuracy comparison between Full Map-
per (Scenario B) and Real Mapper (Scenario D) on
a random topology with a fixed number of brokers
and an increasing number of invisible brokers.

Figure 5 compares the accuracy of the algorithms mea-
sured as the distance graph between the original topology

and the inferred one. As expected, the graph distance in-
creases as more brokers become invisible because they can-
not be saturated. An interesting result standing out in that
figure is that the Real Mapper begins to perform better than
the Full Mapper after the insertion of the third invisible bro-
ker.

0"

0,2"

0,4"

0,6"

0,8"

1"

0" 1" 2" 3" 4" 5"

de
te
c%
on

(ra
te
(

invisible(brokers(

broker"detec3on"rate"

N7degree"broker"detec3on"rate"

Figure 6: Comparison between broker detection rate
and N-degree broker detection rate of the Real Map-
per (Scenario D) on a random topology with a fixed
number of brokers and an increasing number of in-
visible brokers.

The reason why this happens can be explained by looking
at Figure 6, where it is shown how α and η vary for the Real
Mapper when invisible brokers are added. For each new
invisible broker, η decreases because an additional N-degree
broker cannot be detected. On the contrary, α increases
(this happened three times out of five in our tests) because
another broker gets saturated in place of the invisible one,
and if such broker is 2-degree (that couldn’t be detected
before) then the Real Mapper can spot it now.

Figure 7: Example of the effect of an invisible bro-
ker (the central broker of the original topology) on
the topologies inferred by Full Mapper (Scenario B)
and Real Mapper (Scenario D). Wrongly inferred
brokers and links are dotted.

A practical example where this situation occurs is drawn
in Figure 7. In the original topology (the leftmost), the 4-
degree broker is invisible and the other 2-degree brokers are
visible. Both Full and Real Mapper always saturate one of
the 2-degree brokers instead of the 4-degree one. The Full
Mapper knows the link delay, so it is aware that another
broker lies in between any of the 6 pairs of original 2-degree
brokers, but it cannot recognize that such broker is always
the same, which leads to the addition of several wrong bro-
kers and links in the inferred topology (the central one in
Figure 7). The Real Mapper instead doesn’t know the link
delay, and adds a certain number of virtual brokers in all
the 6 paths between any pair of the original 2-degree bro-
kers. All these virtual brokers are removed because they are

2-degree, and only the links remain (rightmost topology in
Figure 7).

Figure 8: 4-tree-cluster topology with mesh-
connected core. Edge brokers are white-filled, in-
ternal brokers are red-filled.

5.1.2 Simulations on Cluster Topologies
Cluster topologies are composed by tree-structured clus-

ters of brokers. Their structure is meant to mimic many
real-world overlay networks where local subnets (clusters)
are connected through gateways linked in a core structure.
We ran tests using 4-cluster topologies that differ in the way
the clusters are connected together in the core of the net-
work, by using either a bus, a ring or a mesh (see Figure 8).
Each single cluster is a tree with 4 internal brokers and 9
edge brokers.

0"

50"

100"

150"

200"

0" 1" 2" 3" 4"

gr
ap

h&
di
st
an

ce
&

invisible&brokers&

bus"

ring"

mesh"

Figure 9: Accuracy comparison of the Real Map-
per (Scenario D) on distinct cluster topologies by
varying the number of invisible brokers.

We measured how the accuracy of the Real Mapper is
affected by the presence of invisible brokers for the three
cluster topologies. Results are plotted in Figure 9. As ex-
pected, for all the topologies the graph distance increases
as more brokers become invisible. Another result emerg-
ing from this simulation concerns the difference in detection
accuracy between mesh-connected, ring-connected and bus-
connected topologies: the more complex the connection is
in the number of links, the less accurate the detection is.

(a) 4-cluster topology with mesh-connected core (Topol-
ogy T1).

(b) 4-cluster topology with mesh-connected core (Topol-
ogy T2).

(c) 3-cluster topology with ring-connected core (Topology
T3).

(d) 4-cluster topology with bus-connected core (Topology
T4).

Figure 10: Comparison between original and inferred topology for different scenarios

5.2 Tests on SIENA prototype
In order to assess the practical effectiveness of our algo-

rithms, we implemented the Real Mapper and tested it on
a cluster of hosts running the official SIENA prototype [1].
Our goal is providing proofs in support of the feasibility of
using the methods we described in Section 4 and simulated
in Section 5.1 to gain knowledge of the topology of a real
distributed pub/sub system.

We setup 12 virtual machines, each equipped with 2x2.8
GHz CPUs, 2 GB RAM, 5 GB of disk storage, all running
Ubuntu 12.04 64-bit as operating system. An instance of
SIENA version 2.0.3 was deployed on each machine, and
the DVDRPControl utility (included in the SIENA software
bundle) was used to connect brokers so as to create the de-
sired topologies. In order to emulate a WAN deployment,
we used WANem version 2.2 (http://wanem.sourceforge.
net/) and set link delay to 100 ms.

A number of challenges arise when moving from simula-
tion in an ideal environment to experimental evaluation of
a real prototype. The main issue to address regards the
presence of relevant noise in the expected link latencies and
dispatching delays in the SIENA cluster, which consider-
ably impacts on the accuracy of inferred topologies. Real
Mapper deals with this problem by increasing the number
of iterations for each triple of edge brokers and consider-
ing the most frequent result. Another problem we had to
tackle is the presence of a transient state when a new flow
of publications is started. During this period, publications
are subjected to much higher delays than expected, which
can mislead the Real Mapper to believe that a broker is sat-
urated. We had to explicitly code routines to handle these

transient states and avoid taking measurements during these
periods.

The first topology (T1) we tested was a 4-cluster mesh-
connected topology where each cluster has one N-degree in-
ternal broker and two edge brokers (see Figure 10a). This
is a very challenging topology for the Real Mapper because
there are many edge brokers, therefore a lot of triples to ana-
lyze (they are 168, see Section 4), and a few internal brokers
to discover, so several distinct paths have to be correctly
merged in order to accurately infer the original topology.
This is the reason why the algorithm missed one internal
broker and some links.

Then we tested a simpler topology (T2) which is mesh-
connected like the first one but each cluster has one N-degree
internal broker and one edge broker (see Figure 10b). The
number of triples to analyze in this topology is one order
smaller compared to the previous one (12), which allows the
Real Mapper to correctly spot all the internal brokers and
all the links.

We also ran the Real Mapper on a 3-cluster ring-connected
topology (T3) where each cluster has two N-degree internal
brokers and two edge brokers (see Figure 10c). The number
of triples to analyze is pretty large (60), indeed the Real
Mapper introduced two wrong links. Nevertheless, it also
managed to correctly detect all the internal brokers.

We finally executed the Real Mapper on a 4-cluster bus-
connected topology (T4) where each cluster has one N-degree
internal node and two edge brokers, apart from one that has
a single edge broker, and there is an internal broker playing
the role of the bus (see Figure 10d). Although the number
of triples to analyze is much larger compared to the previ-

http://wanem.sourceforge.net/
http://wanem.sourceforge.net/

ous topology (105), the algorithm managed to obtain the
best result it could get. Indeed, it only missed the unique
2-degree internal broker of the original topology, which is
known to be impossible to detect for the Real Mapper.

6. CONCLUSIONS
In this paper we considered overlay-based systems that

perform event diffusion using shortest paths and we ad-
dressed the problem of inferring the internal overlay net-
work topology when only a few edge nodes of the overlay
are known by an attacker. We refer to this as the Overlay
Scan Attack. The main result reported here is that prop-
erly shaped event flows can be exploited to implement the
Overlay Scan Attack successfully. This security weakness
has serious practical implications as these information could
be exploited by an attacker to plan potentially dangerous
attacks. The paper introduced an overlay scan algorithm,
namely Real Mapper, and showed how it is able to capture
the overlay topology of a SIENA publish/subscribe system.
The experimental evaluations presented in Section 5.2 pro-
vided evidence about the feasibility of the attack.

The results reported in this paper open several further in-
teresting issues that should be studied further. Firstly, while
the tests performed on the SIENA prototype provided en-
couraging results, they also outlined several difficulties that
arise when noise, present in the system, impacts the algo-
rithm’s accuracy. It could be interesting to test the Real
Mapper algorithm on a real production setting where this
problems could be amplified. Furthermore, the feasibility
of the Overlay Scan Attack shown in this paper opens up
the problem on how system administrators could protect
their infrastructures. Given the limited amount of informa-
tion used by Real Mapper to infer the topology it seems
reasonable that introducing properly shaped noise in the
system and adequately differentiating its internal character-
istics may help to obfuscate the topology. However, this
would come at a non negligible cost, creating a set of trade-
offs that are worth being analyzed.

Another possible technique for detecting this kind of scan
can be based on the recognition of anomalous client behav-
iors, i.e. detecting when clients generate event streams in a
coordinated fashion aimed at saturating some brokers. bro-
ker saturations and the patterns of client publications can
be easily tracked and then properly correlated in order to
spot suspicious activities, so as to take appropriate counter-
measures like blacklisting certain clients.

7. ACKNOWLEDGMENTS
This work has been partially supported by the TENACE

PRIN Project (n. 20103P34XC) funded by the Italian Min-
istry of Education, University and Research and by the aca-
demic project C26A133HZY funded by the University of
Rome “La Sapienza”.

8. REFERENCES
[1] Siena web site.

http://www.inf.usi.ch/carzaniga/siena/.

[2] I. Althöfer. On Optimal Realizations of Finite Metric
Spaces by Graphs. Discrete Comput. Geom.,
3(2):103–122, 1988.

[3] R. Baldoni, L. Querzoni, S. Tarkoma, and
A. Virgillito. Distributed Event Routing in

Publish/Subscribe Communication Systems. In B. G.
H. Miranda, L. Rodriguez, editor, MiNEMA
State-of-the-Art. Springer Berlin / Heidelberg,
February 2009.

[4] Y. Bejerano. Taking the Skeletons Out of the Closets:
A Simple and Efficient Topology Discovery Scheme for
Large Ethernet LANs. In Proceedings of the 25th
IEEE International Conference on Computer
Communications (INFOCOM), pages 1–13, April
2006.

[5] A. Carzaniga, M. J. Rutherford, and A. L. Wolf. A
Routing Scheme for Content-Based Networking. In
Proceedings of the 23rd IEEE International Conference
on Computer Communications (INFOCOM), 2004.

[6] F. Chung, M. Garrett, R. Graham, and D. Shallcross.
Distance Realization Problems with Applications to
Internet Tomography. Journal of Computer and
System Sciences, 63(2):432–448, 2001.

[7] J. C. Culberson and P. Rudnicki. A Fast Algorithm
for Constructing Trees from Distance Matrices. Inf.
Process. Lett., 30(4):215–220, Feb. 1989.

[8] F. Dabek, R. Cox, M. F. Kaashoek, and R. Morris.
Vivaldi: A Decentralized Network Coordinate System.
ACM SIGCOMM, 2004.

[9] W. H. E. Day and H. Edelsbrunner. Efficient
Algorithms for Agglomerative Hierarchical Clustering
Methods. Journal of Classification, 1984.

[10] A. W. M. Dress. Trees, Tight Extensions of Metric
Spaces and the Cohomological Dimension of Certain
Groups: a Note on Combinatorial Properties of Metric
Spaces. Adv. in Math., 53, 1984.

[11] C. Fragouli, A. Markopoulou, and S. N. Diggavi.
Topology Inference Using Network Coding. In
Proceedings of the 44th Allerton Conference on
Communication, Control, and Computing, volume 1,
pages 771–779, September 2006.

[12] C. Gates. Coordinated Scan Detection. In Proceedings
of the 16th Annual Network and Distributed System
Security Symposium (NDSS), 2009.

[13] S. L. Hakimi and S. S. Yau. Distance Matrix of a
Graph and its Realizability. Quart. Appl. Math.,
22:305–317, 1965.

[14] X. Jin, W.-P. Yiu, S.-H. Chan, and Y. Wang. Network
Topology Inference Based on End-to-End
Measurements. IEEE Journal on Selected Areas in
Communications, 24(12):2182–2195, Dec 2006.

[15] M. S. Kang, S. B. Lee, and V. D. Gligor. The Crossfire
Attack. In Proceedings of the 34th IEEE Symposium
on Security and Privacy (SP), pages 127–141,
Washington, DC, USA, 2013. IEEE Computer Society.

[16] J. Ni, H. Xie, S. Tatikonda, and Y. Yang. Efficient and
Dynamic Routing Topology Inference From
End-to-End Measurements. IEEE/ACM Transactions
on Networking, 18(1):123–135, Feb 2010.

[17] A. Papadopoulos and Y. Manolopoulos.
Structure-based Similarity Search with Graph
Histograms. In Proceedings of the 10th International
Workshop on Database and Expert Systems
Applications, pages 174–178, 1999.

[18] T. Schuett, A. Reinefeld, F. Schintke, and
M. Hoffmann. Gossip-based Topology Inference for
Efficient Overlay Mapping on Data Centers. In

http://www.inf.usi.ch/carzaniga/siena/

Proceedings of the 9th IEEE International Conference
on Peer-to-Peer Computing (P2P), pages 147–150,
Sept 2009.

[19] A. Studer and A. Perrig. The Coremelt Attack. In
Proceedings of the 14th European Conference on
Research in Computer Security (ESORICS), pages
37–52, Berlin, Heidelberg, 2009. Springer-Verlag.

[20] D. Stutzbach and R. Rejaie. Capturing Accurate
Snapshots of the Gnutella Network. In Proceedings of
the 24th Annual Joint Conference of the IEEE
Computer and Communications Societies
(INFOCOM), volume 4, pages 2825–2830, March 2005.

[21] A. Wun, A. Cheung, and H.-A. Jacobsen. A Taxonomy
for Denial of Service Attacks in Content-based
Publish/Subscribe Systems. In Proceedings of the 2007
Inaugural International ACM Conference on
Distributed Event-Based Systems (DEBS), pages
116–127, New York, NY, USA, 2007. ACM.

	Introduction
	Related Work
	System Model
	Topology inference algorithm
	Full Mapper
	Real Mapper

	Experimental Evaluation
	Simulations
	Simulations on Random Topologies
	Simulations on Cluster Topologies

	Tests on SIENA prototype

	Conclusions
	Acknowledgments
	References

